

МАГНИТОРАЗВЕДКА Глава 2 «Магнитные свойства горных пород и руд»

Ver 1.3.

Новиков К.В. 2011 – 2017 гг.

Магнитные параметры среды

Величина	Обозн.	Размерность СИ	Размерность СГС	Связь СГС и СИ
1	2	3	4	5
Намагниченность	$\vec{\mathbf{J}}(\vec{\mathbf{I}})$	ампер/метр (А/м)	ед. СГС·см- ³	$1 \text{ A/m} = 10^{-3} \text{ C}\Gamma \text{C} \cdot \text{c} \text{m}^{-3}$
Магнитная проницаемость абсолютная	μ_a	генри/метр (Гн/м)	1 СГС	4·10 ⁻⁷ Гн/м = 1 СГС
Магнитная проницаемость относительная	$\mu(\mu_{OTH})$	Безразмерная	Безразмерная	_
Магнитная проницаемость вакуума (магнитная постоянная)	μ	генри/метр (Гн/м)	ед. СГС	4π·10 ⁻⁷ Гн/м = 1 СГС
Магнитная восприимчивость	æ	ед. СИ	ед. СГС	1 ед.СИ = 4π ед. СГС

Связь индукции магнитного поля и свойств среды

$$\begin{split} \mathbf{B} &= \mu_{0} \left(\mathbf{H} + \mathbf{J}^{\Sigma} \right) = \\ \mu_{0} \left(\mathbf{H} + \mathbf{J}^{\text{инд}} + \mathbf{J}^{\text{ост}} \right) = \\ \mu_{0} \left(\mathbf{H} + \mathbf{x} \mathbf{H} + \mathbf{J}^{\text{ост}} \right) = \\ &= \mu_{0} \left(\mathbf{H} (1 + \mathbf{x}) + \mathbf{J}^{\text{ост}} \right) = \\ \mu_{0} \left(\mu \mathbf{H} + \mathbf{J}^{\text{ост}} \right) = \\ \mu_{0} \left(\mu \mathbf{H} + \mathbf{J}^{\text{ост}} \right) = \\ \mu_{0} \mu \mathbf{H} + \mu_{0} \mathbf{J}^{\text{ост}} \end{split}$$

Индуцированная намагниченность

2.1. Магнитные свойства вещества

2.1.1 Ферромагнетизм

расположением Вещества параллельным С СПИНОВЫХ магнитных ферромагнетиками, называются моментов если же магнитные направлены стороны, TO моменты В разные такие вешества антиферромагнетиками. Существуют называются также разновидности антиферромагнетизма – ферримагнетизм И, так называемый, слабый ферромагнетизм.

Классификация ферромагнитных веществ: а – ферромагнетики; б – антиферромагнетики; в – ферримагнетики; г – слабые ферромагнетики.

Магнитные свойства ферромагнитных минералов

Минерал	Формула	æ, ед.СИ
Магнетит	FeFe ₂ O ₄	8,8–25
Титаномагнетит	x-FeFe ₂ O ₄ (1-x) TiFe ₂ O ₄	10-5-1
Маггемит	y-Fe ₂ O ₃	3,8–25
Магнезиоферрит	MgFe ₂ O ₄	10
Гематит	Fe ₂ O ₃	(1,3–13) ·10 ⁻³
Пирротин	Fe _n S _{n+1}	0,13–1,3
Якобсит	MnFe ₂ O ₄	250
Треволит	NiFe ₂ O ₄	6,3
Гетит	αFeOOH	2,5·10 ⁻⁴
Сидерит	FeCO ₃	(2,7–7,5) ·10 ⁻³

2.1.2. Диамагнетизм и парамагнетизм

Графики намагничивания парамагнетиков и диамагнетиков [Добрынин, 1991].

Магнитная восприимчивость парамагнитных минералов [по Дортман, 1982]

Минерал	нерал Формула					
1	2	3				
	Безжелезистые					
Альбит	Na[AlSi ₃ O ₈]	0				
Микроклин	K[AlSi ₃ O ₈]	0				
Мусковит	$KAl_2[AlSi_3O_{10}][OH]_2$	4–21				
Топаз	Al ₂ SiO ₄ (F, OH)	1,9				
Корунд	Al ₂ O ₃	1,8				
Рутил	TiO ₂	10,6				
Шпинель	MgAl ₂ O ₄	2,8				
Железосодержащие						
Биотит	K (Mg, Fe) ₃ [Si ₃ A1O ₁₀] [OH, F] ₂	(10–100)/30				
Флагопит	KMg ₃ [Si ₃ AlO10]·[F,OH]	(25–100)/50				
Амфиболы	-	(10–140)/60				
Пироксены	-	(30-450)/80				
Оливин	-	1-2000				

Магнитная восприимчивость диамагнитных минералов [Ерофеев и др., 2006]

Минерал	Формула	æ, ∙10-₅ ед.СИ
Кварц	SiO ₂	-1,6
Ортоклаз	K[AlSi ₃ O ₈]	-0,6
Циркон	Zr[SiO ₄]	-1,2
Галенит	PbS	-3,3
Касситерит	SnO ₂	-2,0
Ковелин	CuS	-1,2
Флюорит	CaF ₂	-1,2
Барит	BaSO ₄	-1,8
Сфалерит	ZnS	- 6,5
Апатит	$Ca_5[PO_4]_3$	- 10,3
Графит	С	-0,5

2.2. Индуктивная намагниченность

Рис. 4. Намагниченность однородных моделей с к=2 СИ, полученная

в однородном вертикальном поле под влиянием размагничивания [Блох, 1993]

Коэффициент размагничивания

Коэффициент *N* зависит только от формы тела и изменяется в пределах от 0 до 1 в ед. СИ (0 до 4 π в ед. СГС, N_{CFC} =4 πN_{CH}).

Коэфф. размагничивания <i>N</i> , ед. СИ	Форма тела					
1	Бесконечно тонкая пластинка, намагничивающее поле перпендикулярно к ее плоскости (полюсные поверхности сближены на бесконечно малое расстояние).					
1/2	Круговой цилиндр, намагничиваемый перпендикулярно к его образующей.					
1/3	Шар.					
a/(a + b)	Эллиптический цилиндр, намагничиваемый перпендикулярно к его образующей и параллельно оси <i>a</i> , где <i>a</i> и <i>b</i> – главные оси эллипса сечения.					
0	Бесконечно длинный тонкий стержень, намагничиваемый параллельно его длине (полюсы разнесены на бесконечно большое расстояние).					

2.3. Естественная остаточная намагниченность (ЕОН)

Коэффициент Кенигсбергера

2.4. Намагниченность горных пород

Диаграмма зависимости магнитной восприимчивости горных пород от концентрации ферромагнитных минералов.

Магнитная восприимчивость, ед. СИ объемный процент магнетита 10,1% 10,5% 11% 15% 120% 1100% 1											
	0,00	0001	0,00	0001	0,0001	0,001	0,01	0,1	1	10	100
Железо											железо
Окиси железа					1	ематит	шлак	маг	нетит		
Вулканические						баз	альт				
породы						керамик	a				
						гранит					
						горелая поч	ва				
					габбро						
					дио	тис					
Метаморфичес-					кварц	ит					
кие породы				песчаник							
				12	п	учва					
				по,	дпочва						
		мрам	юр								
Осадочные	м	ел									
породы	изве	стняк									
	пе	сок									

[Смекалова и др, 2007]

2.5. Палеомагнетизм.

Палеомагнетизим и магнитостратиграфия

Полосовые аномалии в Атлантическом океане. World Digital Magnetic Anomaly Map.

Полосовые аномалии возникают в зонах спрединга при образовании молодой коры

Карта возраста океанического дна в Северной Алантике, составленная по магнитным аномалиям У. Питменом и М. Тальвани в 1972 г. и впоследствии подтвержденная результатами глубоководного бурения. Разными цветами выделены участки океанического дна различных возрастных интервалов. Цифры обозначают миллионы лет. [Короновский, 1997]

2.6. Магнитная анизотропия горных пород

Анизотропия магнитной восприимчивости оценивается по формуле:

$$\lambda_{a} = \frac{a_{max} - a_{min}}{2\bar{a}} = \frac{a_{max} - a_{min}}{a_{max} + a_{min}} \quad \text{или} \quad A_{a} = \frac{a_{max}}{a_{min}}$$

$$\lambda_{a} = \frac{1 - A_{a}}{1 + A_{a}} \qquad \qquad A_{a} = \frac{1 - \lambda_{a}}{1 + \lambda_{a}}$$

2.7. Физикогеологические модели (ФГМ)

Физико-геологическая модель (ФГМ) — это совокупность упрощений геометрических и петрофизических свойств геологического разреза.

Упрощения размерности моделей [по Блох, 2009 и Roy, 2007]

Размерность	Изменения свойств среды	Описание модели
0D	Не изменяются во всех направлениях.	Однородное изотропное пространство и полупространство
1D	Только в одном направлении	Горизонтально слоистая среда, вертикально- слоистая среда.
2D	По двум направлениям	Бесконечный горизонтальный цилиндр произвольной формы (длина более чем в 5 раз больше ширины)
2,5D	По двум направлениям	Конченый горизонтальный цилиндр произвольной формы. Частные случаи
2 ³ / ₄ D	1	трехмерных тел.
3D	По трем направлениям	Любые трехмерные объекты.
4D (3Dt)	По трем направлениям и во времени.	Учитывают изменение источников во времени.

0D и 1D модели

2D и 3D модели

V

Геолого-геофизическая модель кимберлитовой трубки и околотрубочного пространства Якутской алмазоносной провинции (по Л.А. Богданову и др.).

– докембрийский кристаллический фундамент; 2 – палеозойская карбонатная толща; 3 – юрские терригенные отложения; 4 – терригенные отложения пермо-карбона; 5 – траппы среднепалеозойские; 6 – траппы пермо-триаса; 7 – кимберлиты; 8 – туфогенные образования пермо-триаса; 9 – зона регионального разлома; 10 – элементарные разрывные нарушения в структуре регионального разлома; 11 – разрывные нарушения, секущие региональный разлом; 12 – трещиноватость радиально-концентрическая В околотрубочном пространстве; 13 – область изменения свойств вмещающих и перекрывающих трубку пород, приводящего к возникновению аномалий η_{κ} (ореолов ВП); 14 – границы слоев различного удельного сопротивления р"; 15 – отражающие горизонты в сейсморазведке; 16 – горизонт карбонатных пород метегерской и ичерской свит повышенной трещиноватости и водонасыщенности; 17 – высокоминерализованные пластовые воды. о – плотность пород, г/см ; Vp – скорость распространения упругих колебаний, км/с; æ – магнитная восприимчивость, n×10⁻⁵ СИ; р, – кажущееся удельное электрическое сопротивление, Омм; η_к – поляризуемость, %.

№ п/п	Магнитная восприимчивость, ·10 ⁻⁵ ед.СИ	Направление вектора ЕОН, Ј _л	Отношение Q= Ј _n /Ј _i	Суммарная намагниченность, ·10 ⁻² ед.СИ
1	0,12	-	-	-
2	0,25–2,0 (23%)			
	3,1–20,0 (38%)	положительное	0,4 (0,1/1,0)	—
	20,0–45,0 (39%)			
3	0,2	—	—	-
4-1	11,0 (8,8/16,0)	положительное	6,5 (4/12)	380 (210/1010)
4-2	18,0 (11,3/25,0)	отрицательное	1,8 (0,8/2,5)	-10,4 (-90/+28,5)
5	1,1 (0,38/2,5)	положительное	5,0 (2/6)	-
6	0,5–13,8	положительное	1–20	-

Обобщенная физико-геологическая модель для Архангельской алмазоносной провинции [Кутинов, Чистова, 2001]

Конец главы 2